Coding The Two TMA Crossovers with Extrapolation

Female Software Engineer Coding on Computer

// This source code is subject to the terms of the Mozilla Public License 2.0
// © Yaseen Khalil
// @version=5

//Define as indicator, overlay on chart

Indicator (” Double Triangular MA Cross”, shorttitle=”TMA Cross”, overlay=true) 

// Inputs for adjusting and defining the Length of the 1st TMA 


length = input(title=”Length1″, type=integer, minval=1, defval=15)
shift     =  -15

cl          = green

// Formula for calculating the triangular moving average

tma      = wma(wma(close, ceil(length / 2)), floor(length / 2) + 1)

// Plotting the the first TMA on the chart

plot(tma, title=”TMA”, linewidth=2, color=cl, transp=0, offset=shift)

//Formula to extrapolate the first TMA a set amount into the future, based on past actions

func (i) =>
    x = wma(wma(close, ceil((length-i) / 2)), floor((length-i) / 2) + 1)[0]
    out = (x * (length-i) + close[0]*i)/length
ld=2
trs=0

// Plotting the extrapolation values as circles to differentiate from the TMA line

plot(func(1),color=cl,linewidth=ld, style=circles ,transp=trs, show_last=1)
plot(func(2),color=cl,linewidth=ld, style=circles ,transp=trs, show_last=1)
plot(func(3),color=cl,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func(4),color=cl,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func(5),color=cl,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func(6),color=cl,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func(7),color=cl,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func(8),color=cl,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func(9),color=cl,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func(10),color=cl,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func(11),color=cl,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func(12),color=cl,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func(13),color=cl,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func(14),color=cl,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func(15),color=cl,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func(16),color=cl,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func(17),color=cl,linewidth=ld, style=circles,transp=trs, show_last=1)

// Inputs for adjusting and defining the Length of the 2nd TMA 

length2 = input(title=”Length1″, type=integer, minval=1, defval=30)
shift2     =  -10

cl2          = red

// Formula for calculating the triangular moving average

tma2      = wma(wma(close, ceil(length2 / 2)), floor(length2 / 2) + 1)

// Plotting the second TMA on the chart

plot(tma2, title=”TMA”, linewidth=2, color=cl2, transp=0, offset=shift2)

//Formula to extrapolate the second TMA a set amount into the future, based on past actions

func2 (i2) =>
    x2 = wma(wma(close, ceil((length2-i2) / 2)), floor((length2-i2) / 2) + 1)[1]
    out2 = (x2 * (length2-i2) + close[0]*i2)/length2
plot(func2(1),color=cl2,linewidth=ld, style=circles ,transp=trs, show_last=1)
plot(func2(2),color=cl2,linewidth=ld, style=circles ,transp=trs, show_last=1)
plot(func2(3),color=cl2,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func2(4),color=cl2,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func2(5),color=cl2,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func2(6),color=cl2,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func2(7),color=cl2,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func2(8),color=cl2,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func2(9),color=cl2,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func2(10),color=cl2,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func2(11),color=cl2,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func2(12),color=cl2,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func2(13),color=cl2,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func2(14),color=cl2,linewidth=ld, style=circles,transp=trs, show_last=1)
plot(func2(15),color=cl2,linewidth=ld, style=circles,transp=trs, show_last=1)

Download and see more projects at my GitHub page.

Now, let’s check out how well it back tests!

Powerful Closures: Leaving a Lasting Impression

Concluding your blog post isn’t just about wrapping things up – it’s your final opportunity to leave a strong impact. Summarize the key takeaways from your post, reinforcing your main points. If relevant, provide actionable solutions or thought-provoking questions to keep readers thinking beyond the post. Encourage engagement by inviting comments, questions, or sharing. A well-crafted conclusion should linger in your readers’ minds, inspiring them to explore further or apply what they’ve learned.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top